Correct Answer is (B) (-2)20 (cos 2x+220 cos 4x )
Given:
Let y=2 cos x cos 3x
\(2\,cos\,A\,cos\,B\)\(=cos(\frac{A+B}{2})+cos(\frac{A-B}{2})\)
So y=cos 2x+cos 4x
\(\frac{dy}{dx}=-2sin\,2x-4sin\,4x\)
= (-2)1 (sin 2x+21 sin 4x )
\(\frac{d^2y}{dx^2}=-4cos\,2x-16cos\,4x\)
= (-2)2 (cos 2x+22 cos 4x )
\(\frac{d^3y}{dx^3}=8cos\,2x+64cos\,4x\)
= (-2)3 (cos 2x+23 cos 4x )
\(\frac{d^4y}{dx^4}=16cos\,2x+256cos\,4x\)
= (-2)4 (cos 2x+24 cos 4x )
For every odd degree; differential = =(-2)n (cos 2x+2n cos 4x );n={1,3,5…}
For every even degree; differential =(-2)n (cos 2x+2n cos 4x );n={0,2,4…}
So,\(\frac{d^{20}y}{dx^{20}}\)\(=(-2)^{20}(cos2x+2^{20}cos4x)\)
= (-2)20 (cos 2x+220 cos 4x );