Given:
x = acos3θ & y = asin3θ at θ = \(\frac{\pi}{4}\)
Here, To find \(\frac{dy}{dx}\), we have to find \(\frac{dy}{d\theta}\) & \(\frac{dx}{d\theta}\) and and divide \(\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\) and we get our desired \(\frac{dy}{dx}\).
\(\therefore\frac{dy}{dx}(x^n)=n.x^{n-1}\)
⇒ x = acos3θ
⇒\(\frac{dx}{d\theta}\) = a( \(\frac{dx}{d\theta}\)(cos3θ ))
\(\therefore\frac{d}{d\theta}\)(cos x) = -sin x
⇒\(\frac{dx}{d\theta}\) = a(3cos3 – 1θ x – sin θ)
⇒\(\frac{dx}{d\theta}\) = a(3cos2θ x – sin θ)
⇒\(\frac{dx}{d\theta}\) = -3acos2θ sinθ ......(1)
⇒ y = asin3θ
⇒\(\frac{dy}{d\theta}\) = a( \(\frac{dy}{d\theta}\)(cos3θ ))
\(\therefore\frac{d}{d\theta}\)(sin x) = cos x
⇒\(\frac{dy}{d\theta}\) = a(3sin3 – 1θ x cos θ)
⇒\(\frac{dy}{d\theta}\) = a(3sin2θ x cos θ)
⇒\(\frac{dy}{d\theta}\) = -3asin2θ cosθ ......(2)

The Slope of the tangent is – tan θ
Since, \(\theta=\frac{\pi}{4}\)

\(\therefore\) tan( \(\frac{\pi}{4}\) ) = 1
\(\therefore\) The Slope of the tangent at x = \(\frac{\pi}{4}\) is – 1
⇒ The Slope of the normal =\(\frac{-1}{\text{The Slope of the tangent}}\)
⇒ The Slope of the normal = \(\frac{-1}{(\frac{dy}{dx})_{\theta=\frac{-\pi}{4}}}\)
⇒ The Slope of the normal =\(\frac{-1}{1}\)
⇒ The Slope of the normal = – 1