Option : (b)
Formula :-
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\(\lim\limits_{x \to a}f(x)\) = f(a)
\(\lim\limits_{x \to a^+}f(a+h)\) = \(\lim\limits_{x \to a^-}f(a-h)\) = f(a)
Given :-
f(x) = \(\begin{cases} \frac{e^{1/x}-1}{e^{1/x}+1}&, \quad x ≠{0}\\ 0&, \quad x =0 \end{cases} \)
Using substitution method,

And,
F(0) = 0
Therefore,
\(\lim\limits_{x \to 0}f(x)\) ≠ f(0)
Hence,
f(x) is discontinuous at x = 0