Given:
If a tangent line to the curve y = f(x) makes an angle θ with x – axis in the positive direction, then \(\frac{dy}{dx}\)=The Slope of the tangent = tanθ
xy + 4 = 0
Differentiating the above w.r.t x
⇒ x x \(\frac{d}{dx}\) (y) + y x \(\frac{d}{dx}\) (x) + \(\frac{d}{dx}\) (4) = 0
⇒ x \(\frac{dy}{dx}\)+ y = 0
⇒ x \(\frac{dy}{dx}\)= – y
⇒ \(\frac{dy}{dx}\) = \(\frac{-y}{x}\)...(1)
Also, \(\frac{dy}{dx}\) = tan45° = 1 ...(2)
From (1) & (2),we get,
⇒ \(\frac{-y}{x}\) = 1
⇒ x = – y
Substitute in xy + 4 = 0,we get
⇒ x( – x) + 4 = 0
⇒ – x2 + 4 = 0
⇒ x2 = 4
⇒ x = \(\pm\)2
so when x = 2,y = – 2
& when x = – 2,y = 2
Thus, the points are (2, – 2) & ( – 2,2)