In right isosceles ∆ABC
Area of triangle = \(\frac{1}2\)(Base x Altitude)
8 = \(\frac{1}2\)(x x x) = \(\frac{1}2{x}^2\)
x = \(\sqrt{16}\) = 4 cm
(AC)2 = (AB)2 + (BC)2
y2 = x2 + x2

y2 = 42 + 42
y2 = \(\sqrt{{4}^2+{4}^2}\) = \(\sqrt{32}\) = 4\(\sqrt2\) cm
Perimeter of ∆ABC = AB + BC + CA = 4 + 4 + \(4\sqrt{2}\)= 8 + \(4\sqrt{2}\) cm