In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.
\(\sqrt{3}x^{2}-2\sqrt{2}x-2\sqrt{3}=0\)
⇒ √3x2 – 3√2x + √2x – 2√3 = 0
⇒ √3x2 – √3×√3×√2x + √2x – 2×√3×√3 = 0
⇒ √3x2 – √3×√6x + √2x – √6×√3 = 0
⇒ √3x(x - √6) + √2(x - √6) = 0
⇒ (√3x + √2)(x - √6) = 0
⇒ x = √6, -√(2/3)