(i) kx2 + 2x + 1 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D > 0, roots are real and distinct
kx2 + 2x + 1 = 0
⇒ D = 4 – 4k
⇒ 4 – 4k > 0
⇒ k < 1
(ii) kx2 + 6x + 1 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D > 0, roots are real and distinct
kx2 + 6x + 1 = 0
⇒ D = 36 – 4k
⇒ 36 – 4k > 0
⇒ k < 9
(iii) x2 - kx + 9 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D > 0, roots are real and distinct
x2 - kx + 9 = 0
⇒ D = k2 – 36
⇒ k2 – 36 > 0
⇒ (k + 6)(k – 6) > 0
⇒ k < -6 or k > 6