let us assume I = \(\int\limits_{0}^{2\pi}\cfrac{e^{sin\,\text x}}{e^{sin\,\text x}+e^{-sin\,\text x}}d\text x \).... equation 1
By property, we know that \(\int\limits_{a}^{b}
\)f(x) dx = \(\int\limits_{a}^{b}
\)f(a + b - x)dx
I = \(\int\limits_{0}^{2\pi}\cfrac{e^{sin(2\pi-\text x)}}{e^{sin(2\pi-\text x)}+e^{-sin(2\pi-\text x)}}d\text x
\).....equation 2
Adding equation 1 and 2
2I = \(\int\limits_{0}^{2\pi}\cfrac{e^{sin\,\text x}}{e^{sin\,\text x}+e^{-sin\,\text x}}d\text x \) + \(\int\limits_{0}^{2\pi}\cfrac{e^{sin(2\pi-\text x)}}{e^{sin(2\pi-\text x)}+e^{-sin(2\pi-\text x)}}d\text x
\)
We know sin(2π - x) = -sin x
Thus
2I = \(\int\limits_{0}^{2\pi}\cfrac{e^{sin\,\text x}}{e^{sin\,\text x}+e^{-sin\,\text x}}d\text x \) + \(\int\limits_{0}^{2\pi}\cfrac{e^{-sin\,\text x}}{e^{-sin\,\text x}+e^{sin\,\text x}}d\text x \)
We know
