Given,
I = \(\int\frac{2x+1}{\sqrt{x^2+2x-1}}\)dx
Integral is of form
\(\int\frac{px+q}{\sqrt{ax^2+bx+c}}\)dx
Writing numerator as,
px + q = λ \(\{\frac{d}{dx}(ax^2+bx+c)\}+μ \)
⇒ px + q = λ(2ax + b) + μ
⇒ 2x + 1 = λ (2x + 2) + μ
⇒ x = λ (2x + 6) + μ
∴ λ = 1 and μ = -1
Let 2x + 1 = 2x + 2 – 1 and split,


