Given, cosecA = √2
⇒ Cot2A = cosec2A - 1 = (√2)2 - 1
= 2 - 1 = 1
and, tan2 A = \(\frac{1}{cot^2A}\) = \(\frac{1}{1}\) = 1
⇒ sin2A = \(\frac{1}{cosec^2A}\) = \(\frac{1}{\Big(\sqrt{2}\Big)^2}\) = \(\frac{1}{2}\)
⇒ cos2A = 1 - sin2 A = 1 - \(\Big(\frac{1}{2}\Big)^2\) = 1 - \(\frac{1}{4}=\frac{3}{4}\)
Now,
