∫ cosec2x cos22x dx
= ∫cosec2x(cos2x-sin2x)2dx
Opening the square,

On multiplying (1-sin2x)(1-sin2x) equation reduces to,
= ∫(cosec2x-2+sin2x-2cos2x+ sin2x)dx
= ∫(cosec2x-2+2sin2x-2cos2x)dx
= ∫(-2(cos2x-sin2x)+cosec2x-2)dx
= ∫(-2cos2x+cosec2x-2)dx
On solving this we get our answer i.e,
= \(\frac{-2sin2x}{2}\) - cotx - 2x + c
=-sin2x - cotx - 2x + c