When we toss a coin three times we have the following possibilities:
{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Let X be a random variable representing some heads in 3 tosses of a coin.
∵ The probability of getting a head and probability of getting a tail are independent events and P(GETTING A TAIL) = P(GETTING A HEAD) = 1/2
∴ P(Head in the first toss) and P(Head in the second toss) and P(head in the third toss) can be given by their products.
Note: P(AՈB) = P(A)P(B) where A and B are independent events.
Thus,
P(X = 0) = P(TTT) = P(T)P(T)P(T) = 1/2 x 1/2 x 1/2 = 1/8
P(X = 1) = P(HTT or THT or TTH) = P(HTT) + P(THT) + P(TTH)
= P(H)P(T)P(T) + P(T)P(H)P(T) + P(T)P(T)P(H)
= 1/2 x 1/2 x 1/2 + 1/2 x 1/2 x 1/2 + 1/2 x 1/2 x 1/2
= 3/8
P(X = 3) = P(HHH) = P(H)P(H)P(H) = 1/2 x 1/2 x 1/2 = 1/8
Now we have pi and xi.

∴ Now we are ready to write the probability distribution for X:-
The following table gives probability distribution:
