Let the tens and the units digits of the required number be x and y, respectively.
Then, we have:
xy = 35 …….(i)
Required number = (10x + y)
Number obtained on reversing its digits = (10y + x)
∴(10x + y) + 18 = 10y + x
⇒9x – 9y = -18
⇒ 9(y – x) = 18
⇒ y – x = 2 ……..(ii)
We know:
(y + x)2 – (y – x)2 = 4xy

⇒ y + x = 12 ……..(iii) (∵ x and y cannot be negative)
On adding (ii) and (iii), we get:
2y = 2 +12 = 14
⇒y = 7
On substituting y = 7in (ii) we get
7 – x = 2
⇒ x = (7 – 2) = 5
∴ The number = (10x + y) = 10 × 5 + 7 = 50 + 7 = 57
Hence, the required number is 57.