Given that: f = {(0, -5), (1, -2), (3, 4), (4, 7)} be a function from Z to Z defined by linear function.
We know that, linear functions are of the form y = mx + b
Let f(x) = ax + b, for some integers a, b
Here, (0, -5) ∈ f
⇒ f(0) = -5
⇒ a(0) + b = -5
⇒ b = -5 …(i)
Similarly, (1, -2) ∈ f
⇒ f(1) = -2
⇒ a(1) + b = -2
⇒ a + b = -2
⇒ a + (-5) = -2 [from (i)]
⇒ a = -2 + 5
⇒ a = 3
∴ f(x) = ax + b
= 3x + (-5)
f(x) = 3x – 5