Given that we need to find the equation of the ellipse passing through the points (4, 3) and (- 1, 4).

Let us assume the equation of the ellipse as

Substituting the point (4, 3) in (1) we get

⇒ 16b2 + 9a2 = a2 b2 ..... - - (2)
Substituting the point (- 1,4) in (1) we get

⇒ b2 + 16a2 = a2b2 ..... - - (3)
(3) × 16 - (2)
⇒ (16b2 + 256a2) - (9a2 + 16b2) = (16a2b2 - a2b2)
⇒ 247a2 = 15a2b2 ⇒ 15b2 = 247
⇒ b2 = \(\cfrac{247}{15}\)
From (3)

The equation of the ellipse is

⇒ 7x2 + 15y2 = 247
∴ The equation of the ellipse is 7x2 + 15y2 = 247.