We have L.H.S = \(\lim\limits_{\text x \to \infty}(\sqrt{\text x^2+\text x +1}-\text x) \)
Rationalizing the numerator, we get,

Taking x as common from both numerator and denominator,

Now x→∞ and \(\cfrac1{\text x}\) = 0 then
Therefore, R.H.S = 0
So, L.H.S ≠ R.H.S
Hence, \(\lim\limits_{\text x \to \infty}(\sqrt{\text x^2+\text x +1}-\text x) \) ≠ \(\lim\limits_{\text x \to \infty}(\sqrt{\text x^2+1}-\text x) \)