Using properties of determinants prove that:
\(\begin{vmatrix}
{\text{x}} +4 & 2{\text{x}} & 2{\text{x}} \\[0.3em]
2{\text{x}} & {\text{x}} +4 &2{\text{x}} \\[0.3em]
2{\text{x}} & 2{\text{x}} & {\text{x}} +4
\end{vmatrix}\) = (5x + 4)(x-4)2
|(x+4, 2x,2x)(2x, x +4, 2x)(2x, 2x,x + 4)| = (5x + 4)(x - 4)2