Let ƒ : R → R be defined as.
f(x) = \(\begin{cases} \frac{x^3}{(1-cos2x)^2}log_e[\frac{1+2xe^{-2x}}{(1-xe^{-x})^2}], & x\neq0 \\ \alpha, & x=0 \end{cases}\)
f(x) = {x3/(1-cos2x)2 loge[1+2xe-2x/(1-xe-x)2], x ≠ 0
α, x = 0
If ƒ is continuous at x = 0, then α is equal to :
(1) 1
(2) 3
(3) 0
(4) 2