Let f : R → R be defined as
f(x + y) + f(x – y) = 2 f(x) f(y), f(\(\frac{1}{2}\)) = - 1. 2
Then, the value of \(\displaystyle \sum_{k=1}^{20}\) \(\frac{1}{sin(k)sin(k + f(k))}\) is equal to:
(1) cosec2 (21) cos(20) cos(2)
(2) sec2 (1) sec(21) cos(20)
(3) cosec2 (1) cosec(21) sin(20)
(4) sec2 (21) sin(20) sin(2)