Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
2.7k views
in Calculus by (10.7k points)
closed by

Class 12 Maths MCQ Questions of Integrals with Answers?

3 Answers

+2 votes
by (14.5k points)
selected by
 
Best answer

To help the students in their preparations, Class 12 Maths MCQ Questions of Integrals with Answers were created by subject specialists as per exam pattern and syllabus. The ideas of integrals are given in an exhaustive and straightforward manner. These Important MCQ Questions are exceptionally straightforward and can without much of a stretch help students in learning the interaction of problem-solving.

As per the new syllabus, Integration Important Multiple Choice Questions for Class 12 gives you the most recent Questions and solutions. To help you better, students can clarify every one of their questions about every part by practicing these significant Questions and careful clarifications given by our specialists. These Questions will assist students with preparation for the tests. The chapter-wise strategy for planning for your board assessment offers you Integration Important MCQ Questions for Class 12.

Practice MCQ Question for Class 12 Maths chapter-wise

 1. ∫ 1+sinx/1+cosx . ex dx is equal to

(a) etan(x/2)+k
(b) ex tanx+k
(c) 1/2ex tan(x/2)+k
(d) ex sec2(x/2)+k

2. \(\int\frac{2^x}{\sqrt{1-4^x}}dx\) = K sin-1(2x)+C, then K is equal to

(a) ln2
(b) 1/2 ln2
(c) 1/2
(d) 1/ln2

3. If \(\int\frac{2^{1/x}}{x^2}dx=\) k.21/x+C, then k is equal to

(a) -1/loge2
(b) -loge2
(c) -1
(d) 1/2

4. \(\int\frac{1}{sin^2xcos^2x}dx\) is equal to

(a) sin2 x – cos2 x + C
(b) -1
(c) tan x + cot x + C
(d) tan x – cot x + C

5. \(\int\frac{cos2x-cos2\theta}{cosx-cos\theta}dx\) is equal to

(a) 2(sin x + x cos θ) + C
(b) 2(sin x – x cos θ) + C
(c) 2(sin x + 2x cos θ) + C
(d) 2(sin x – 2x cos θ) + C

6. ∫cot2x dx equals to

(a) cot x – x + C
(b) cot x + x + C
(c) -cot x + x + C
(d) -cot x – x + C

7. \(\int\frac{sinx+cosx}{\sqrt{1+sin2x}}dx,\frac{3\pi}{4}<x<\frac{7\pi}{4}\) is equal to

(a) log |sin x + cos x|
(b) x
(c) log |x|
(d) -x

8. If ∫ sec2(7 – 4x)dx = a tan (7 – 4x) + C, then value of a is

(a) 7
(b) -4
(c) 3
(d) −1/4

9. The value of X for which

\(\int\frac{4x^3+\lambda4^x}{4^x+x^4}dx=log|4^x+x^4|is\)

(a) 1
(b) loge4
(c) loe4 e
(d) 4

10. If \(\int\frac{1}{\sqrt{4-9x^2}}dx=\frac{1}{3}sin^{-1}(ax)+C,\) then value of a is

(a) 2
(b) 4
(c) 3/2
(d) 2/3

11. \(\int\frac{10x^9+10^xlog_e10}{x^{10}+10^x}dx\) equals

(a) 10x -x10 + c
(b) 10x + x10 + c
(c) (10x – x10)-1 + c
(d) log (10x + x10) + c.

12. \(\int\frac{e^x(1+x)}{cos^2(xe^2)}dx \) is equals to

(a) -cot (xex) + c
(b) tan (xex) + c
(c) tan (ex) + c
(d) cot (ex) + c

13. If \(\int\frac{1}{(x^2+4)(x^2+9)}dx=A\,tan^{-1}\frac{x}{2}+B\,tan^{-1}(\frac{x}{3})\) +C then A-B =

(a) 1/6
(b) 1/30
(c) -1/30
(d) -1/6

14. The value of \(\int\frac{e^x(x^2tan^{-1}x+tan^{-1}x+1)}{x^2+1}\)  dx is equal to

(a) extan-1x+C
(b) tan-1(ex)+C
(c) tan-1(xe)+C
(d) etan^-1x+C

15. If ∫ dx/[(x+2)(x2+1)] =  a log |1 + x2| + b tan–1x + (1/5) log |x + 2| + C, then 

(a) a = -1/10, b = -2/5 
(b) a = 1/10, b = -2/5 
(c) a = -1/10, b = 2/5 
(d) a = 1/10, b = 2/5

16. \(\int x^2e^{x^3}\) dx equals

(a) 1/3 ex^3+C
(b) 1/3 ex^4+C
(c) 1/2 ex^3+C
(d) 1/2 ex^2+C

17. ∫ex sec x (1 + tan x) dx equals

(a) ex cos x + c
(b) ex sec x + c
(c) ex sin x + c
(d) ex tan x + c.

18. ∫tan-1 √x dx is equal to

(a) (x + 1)tan-1 √x – √x + c
(b) x tan-1 √x – √x + c
(c) √x – x tan-1 √x + c
(d) tan-1x – (x + 1) tan-1 √x + c

19. ∫ex(cosx−sinx)dx is equal to

(a) ex cosx + C
(b) ex sinx + C
(c) -ex cosx + C
(d) -ex sinx + C

20. If a is such that \(\int_0^axdx\) ≤ a + 4, then

(a) 0 ≤ a ≤ 4
(b) -2 ≤ a ≤ 0
(c) a ≤ -2 or a ≤ 4
(d) -2 ≤ a ≤ 4

+2 votes
by (14.5k points)

Answer: 

1. Answer: (a) etan(x/2)+k

Explanation: \(\int\frac{1+sin\,x}{1+cos\,x}.e^xdx\)

Use \(cos\,x=\frac{1-tan^2(x/2)}{1+tan^2(x/2)},sin\,x=\frac{2tan(x/2)}{1+tan^2(x/2)}\)

The integral becomes

\(=\int\frac{1+tan^2(x/2)+2\,tan(x/2)}{1+tan^2(x/2)+1-tan^2(x/2)}.e^xdx\)

\(=\int\frac{sec^2(x/2)+2\,tan(x/2)}2.e^xdx\)

\(=\int\left[\frac12sec^2(x/2)+tan(x/2)\right]e^xdx\)

If we take tan (x/2) = f(x), the equation takes the form

\(\int e^x\) [f(x) + f'(x)]dx

\(=e^x\) f(x) + k

\(=e^x\) tan (x/2) + k

2. Answer: (d) 1/ln2

Explanation: \(I=\int\frac{2^x}{\sqrt{1-4^x}}dx\)

Let \(2^x\) = z

\(\Rightarrow\) \(2^x\) log 2dx = dz

\(\Rightarrow\) \(I=\int\cfrac{\frac1{log\,2}}{\sqrt{1-z^2}}dz\)

\(=\frac1{log\,2}.sin^{-1}z+c\)

\(=\frac1{log\,2}.sin^{-1}(e^x)+c\)

\(=k\,sin^{-1}(2^x)+c\)

then k \(=\frac1{log\,2}.\)

3. Answer: (a) -1/loge2

Explanation: \(I=\int\frac{2^{\frac1x}}{x^2}dx=k.2^{\frac1x}+C\;\;...(1)\)

Let \(\frac1x\) = t

\(\Rightarrow\) \(\frac{-1}{x^2}dx=dt\)

\(\Rightarrow\) \(\frac{dx}{x^2}\) = -dt

Put \(\frac1x\) = t and \(\frac{dx}{x^2}\) = -dt  ....in LHS of equation (1) we get

\(I=-\int2^t.dt\)

\(=-\frac{2^t}{In\,2}+C\)

\(=-\frac{2^{\frac1x}}{In\,2}+C\;\;...(2)\)

Comparing of RHS of equation (1) with equation (2) we get

\(k=-\frac1{In\,2}\)

\(\therefore\) \(k=-\frac1{log_e\,2}\)

4. Answer: (d) tan x – cot x + C

Explanation: \(\int\frac1{sin^2x\,cos^2x}dx\)

\(=\int\frac{sin^2x+cos^2x}{sin^2x\,cos^2x}dx\)

\(=\int(sec^2x+cosec^2x)dx\)

= tan x - cot x + C

5. Answer: (a) 2(sin x + x cos θ) + C

Explanation: as \(\int\frac{2(cos^2x-cos^2\theta)}{cos\,x-cos\,\theta}dx,\)

using cos 2x = 2 \(cos^2x\) - 1

= 2 \(\int(cos\,x+cos\,\theta)dx\)

= 2 sin x + 2x . cos \(\theta\) + C

6. Answer: (d) -cot x – x + C

Explanation: ∫ (cosec2x -1)dx = -cot x – x + C

7. Answer: (d) -x

Explanation: as \(\int\frac{sin\,x+cos\,x}{|sin\,x+cos\,x|}dx,\)

\(\Rightarrow\) \(-\int\) 1.dx = -x + C

{as sin x + cos x < 0 for \(\frac{3\pi}{4}<x<\frac{7\pi}{4}\}\)

8. Answer: (d) −1/4

Explanation: \(\int sec^2(7-4x)dx=\frac{tan(7-4x)}{-4}+C\)

\(=-\frac14\) tan (7 - 4x) + C.

9. Answer: (b) loge4

Explanation: \(as\,\frac d{dx}log|4^x+x^4|=\frac1{4^x+x^4}.(4^x.log_e4+4x^3)\) \(=\frac{4x^3+log_e\,4.4^x}{4^x+x^4}\)

\(\Rightarrow\lambda=log_e\,4\)

10. Answer: (c) 3/2

Explanation: \(as\int\frac1{\sqrt{4-9x^2}}dx=\frac13\int\frac1{\sqrt{(\frac23)^2-x^2}}dx\)

\(=\frac13sin^{-1}(\frac{3x}2)+C\)

\(\Rightarrow a=\frac32.\)

+1 vote
by (14.5k points)
edited by

11. Answer: (d) log (10x + x10) + c.

Explanation: Given:

\(\int\frac{(10x^9+10x\,In\,10)dx}{(x^{10}+10^x)}\)

To evaluate

take \(y=x^{10}+10^x\)

\(\frac{dy}{dx}=10x^9+10x\,In\,10\)

\(dy=(10x^9+10^x\,In\,10)\;dx\)

\(\therefore\) \(I=\int\frac{dy}y=In\,y\)

Hence, the correct answer is \(In|(x^{10}+10^x)|\)

12. Answer: (b) tan (xex) + c

Explanation: Let \(I=\int\frac{e^x(1+x)}{cos^2(xe^x)}dx\)

Put \(x.e^x\) = t

Diff.w.r.t..x

\(\therefore\) \(x.e^x+e^x.1=\frac{dt}{dx}\)

\(\therefore\) \(e^x(1+x)dx=dt\)

\(\therefore I=\int\frac{dt}{cos^2t}=\int sec^2tdt\)

\(\therefore\) tan t + c

\(=tan(x.e^x)+e\)

13. Answer: (a) 1/6

Explanation: Given :

\(\therefore\) \(\int\frac1{(x^2+4)(x^2+9)}dx\) \(=A\,tan^{-1}\frac x2+B\,tan^{-1}\frac x3+C\;\;...(i)\)

\(\frac1{AB}=\frac1{B-A}(\frac1{A}-\frac1{B})\)

\(\therefore\) \(\int\frac1{(x^2+4)(x^2+9)}dx\) \(=\int\frac1{5}(\frac1{x^2+4}-\frac1{x^2+9})dx\)

\(=\frac1{5}\left[\frac1{2}tan^{-1}\frac x{2}-\frac1{3}tan^{-1}\frac x{3}\right]+C\)

\(=\frac1{10}tan^{-1}\frac x{2}-\frac1{15}tan^{-1}\frac x{3}+C\)

Comparing above equation with (i) we get

A = \(\frac1{10}\) and B = \(-\frac1{15}\)

\(\therefore\) A - B \(=\frac{1}{10}+\frac{1}{15}=\frac{5}{30}=\frac{1}{6}\)

14. Answer: (a) extan-1x+C

Explanation: \(\int\frac{e^x(x^2tan^{-1}x+tan^{-1}x+1)}{x^2+1}dx\) \(=\int\frac{e^x[(x^2+1)\,tan^{-1}x)+1]}{x^2+1}dx\)

\(=\int e^x(tan^{-1}x+\frac{1}{1+x^2})dx\) \(=e^xtan^{-1}x+c\)

Note : \(\int\) \(e^x\)[f(x) + f'(x)] dx = \(e^x\) f(x) + c

Here f(x) = \(tan^{-1}x\)

15. Answer: (c) a = -1/10, b = 2/5 

Explanation: \(I=\int\frac{dx}{(x+2)(x^2+1)}\)

\(\frac{1}{(x+2)(x^2+1)}=\frac A{x+2}+\frac{Bx+C}{x^2+1}\)

\(\Rightarrow\) 1 = A(\(x^2\)+1) + (Bx+C) (x+2)

\(\Rightarrow\) 1 = (A+B)\(x^2\) + (2B+C)x + A + 2C

Comparing coefficients, we get

A+B = 0, A+2C = 1, 2B+C = 0

Solving we get A = \(\frac15\), B = \(-\frac15\) and C = \(\frac25\)

\(\therefore\) \(\int\frac{dx}{(x+2)(x^2+1)}\)

\(=\frac15\int\frac1{x+2}dx+\int\cfrac{-\frac{1}{5}x+\frac{2}{5}}{x^2+1}dx\)

\(=\frac15\int\frac1{x+2}dx-\frac1{10}\int\frac{2x}{1+x^2}dx+\frac15\int\frac{2}{1+x^2}dx\)

\(=\frac15log|x+2|-\frac1{10}log|1+x^2|\) \(+\frac25tan^{-1}x+C\)

\(=a\,log|1+x^2|+b\,tan^{-1}x\) \(+\frac15\,log|x+2|+C\) (given)

\(\therefore\) \(a=\frac{-1}{10},b=\frac25\)

16. Answer: (a) 1/3 ex^3+C

Explanation: \(\int x^2e^xdx\)

Let \(x^3\) = t

\(\Rightarrow\) \(3x^2=\frac{dt}{dx}\)

\(\Rightarrow dx=dt/3x^2\)

\(\therefore\) \(\int x^2\times e^t\times\frac{dt}{3x^2}\)

\(=\frac13\int e^tdt\)

\(=\frac13e^t+c\)

\(=\frac13\times e^{x^3}+c\)

17. Answer: (b) ex sec x + c

Explanation: Let \(I=\int e^x\) sec x (1+tan x)dx

\(=\int e^x\) (sec x + sec x tan x)dx

Also, let sec x = f(x)

\(\Rightarrow\) sec x tan x = f'(x)

We know that,

\(\int e^x\) {f(x) + f'(x)} = \(e^x\) f(x) + C

\(\therefore\) I = \(e^x\) sec x + C

18. Answer: (a) (x + 1)tan-1 √x – √x + c

Explanation: \(\int tan^{-1}\;\sqrt xdx\)

Apply integration by parts

\(x\int tan^{-1}\;\sqrt x-\int\frac x{2(1+x)\sqrt x}dx\)

\(x\int tan^{-1}\;\sqrt x-\frac12\int\frac{\sqrt x}{1+x}dx\)

Let \(\sqrt x\) = t

\(\frac{dx}{2\sqrt x}=dt\)

dx = 2tdt

\(=x\,tan^{-1}\;\sqrt x-\int\frac{t^2}{1+t^2}dt\)

\(=x\,tan^{-1}\;\sqrt x-\int dt+\int\frac{1}{1+t^2}dt\)

\(x\,tan^{-1}\;\sqrt x-\sqrt x+tan^{-1}\sqrt x+c\)

\(=(x-1)tan^{-1}\sqrt x-\sqrt x+c\)

19. Answer: (a) ex cosx + C

Explanation: since \(\int e^x\) (f(x) + f'(x))dx = \(e^x\) f(x) + C

Here f(x) = cos x, f'(x) = -sin x. 

So, \(\int e^x\) (cos x - sin x)dx = \(e^x\) cos x + C

20.  Answer: (d) -2 ≤ a ≤ 4

Explanation: as \(\int_0^axdx\) ≤ a + 4
⇒ a2/2 ≤ a + 4
⇒ a2 – 2a — 8 ≤ 0
⇒ (a – 1)2 ≤ (3)2
⇒ -3 ≤ a – 1 ≤ 3
⇒ -2 ≤ a ≤ 4

Click here to Practice MCQ Question for Integrals Class 12

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...