Given : A = \( \begin{bmatrix} 1&1 \\[0.3em] 0& 1 \\[0.3em] \end{bmatrix},\)
Matrix A is of order 2 x 2.
To prove : An = \( \begin{bmatrix} 1&n \\[0.3em] 0& 1 \\[0.3em] \end{bmatrix}\)
Proof :
A = \( \begin{bmatrix} 1&1 \\[0.3em] 0& 1 \\[0.3em] \end{bmatrix}\)
Let us assume that the result holds for An - 1
An - 1 = \( \begin{bmatrix} 1& n-1 \\[0.3em] 0& 1 \\[0.3em] \end{bmatrix}\)
We need to prove that the result holds for An by mathematical induction .
An = An – 1 × A

