Given Differential Equation :
\((1+x)\frac{dy}{dx} - y= e^{3x}\,(1+x)^2\)
Formula :
i) \(\int \frac{1}{px+q}\, dx = \frac{1}{p}\) log (px+ q)
ii) alog b = log ba
iii) aloga b = b
iv) \(\int e^{kx} \, dx = \frac{1}{k}\,e^{kx}\)
v) General solution :
For the differential equation in the form of
\(\frac{dy}{dx} + Py = Q\)
General solution is given by,
y. (I. F.) = \(\int\) Q. (I. F.) dx + c
Where, integrating factor,
I. F. = \(e^{\int p\,dx}\)
Given differential equation is
\((1+x)\frac{dy}{dx} - y= e^{3x}\,(1+x)^2\)
Dividing above equation by (1+x),
\(\frac{dy}{dx} - \frac{1}{(1+x)}\, y = e^{3x}\,(1+x)\) …eq(1)
Equation (1) is of the form
\(\frac{dy}{dx} + Py = Q\)
Where, \(P = \frac{-1}{(1+x)}\,and\,Q = e^{3x}\,(1+x)\)
Therefore, integrating factor is

General solution is

Multiplying above equation by (1+x),
∴ y = \(\frac{1}{3} (1 + x)\, e^{3x} + c\,(1+x)\)
Therefore general equation is
y = \(\frac{1}{3} (1 + x)\, e^{3x} + c\,(1+x)\)