x2\(\frac{d^2y}{d\mathrm x^2}\) + 5x\(\frac{dy}{d\mathrm x}\) + 4y = x log x ...........(1)
let log x = z ⇒ x = ez
\(\Rightarrow \frac{1}{\mathrm x}\)dx = dz (differentiate both sides)
\(\Rightarrow \frac{\mathrm x}{d\mathrm x}=\frac{1}{dz}\)
\(\Rightarrow \mathrm x \frac{dy}{d\mathrm x}=\frac{dy}{dz}\) ............(2)
differentiate eqn (2) w.r.t x, we get
\(\mathrm x\frac{d^2y}{d\mathrm x^2}+\frac{dy}{d\mathrm x}\) \(=\frac{d^2y}{dz^2}\) \(\frac{dz}{d\mathrm x}\)
\(\Rightarrow \mathrm x\frac{d^2y}{d\mathrm x^2}+\frac{dy}{d\mathrm x}\) \(=\frac{1}{\mathrm x}\frac{d^2y}{dz^2}\) \(\left(\because \frac{dz}{d\mathrm x}=\frac{1}{\mathrm x}\right)\)
\(\Rightarrow \mathrm x^2\frac{d^2y}{d\mathrm x^2}+\mathrm x\frac{dy}{d\mathrm x}\) \(=\frac{d^2y}{dz^2}\)
\(\Rightarrow \mathrm x^2\frac{d^2y}{d\mathrm x^2}=\frac{d^2y}{dz^2}-\mathrm x\frac{dy}{d\mathrm x}\)
\(\Rightarrow \mathrm x^2\frac{d^2y}{d\mathrm x^2}=\frac{d^2y}{dz^2}-\frac{dy}{dz}\) .........(3) (From equation (2))
From equations (1), (2) and (3), we get
\(\frac{d^2y}{dz^2}-\frac{dy}{dz}+5\frac{dy}{dz}+4y\) \(=ze^2\) ............(4)
Its auxiliary equation is
m2 – m + 5m + 4 = 0
⇒ m2 + 4m + 4 = 0
⇒ (m + 2)2 = 0
⇒ m = –2, –2
Therefore, C.F = (C1 + C2z)e–2z
P.I. \(=\frac{1}{D^2+4D+4}ze^z\) \((\because D=\frac{d}{dz})\)
\(=\frac{1}{(D+2)^2}ze^z\)
= ez \(\frac{1}{((D+1)+2)^2}z\) (\(\because\) \(\frac{1}{f(D)}e^{an}V=e^{a\mathrm x}\frac{1}{f(D+a)}V\) where V is function of x)
\(=e^z\frac{1}{(D+3)^2}z\)
\(=\frac{e^z}{9} \left(1+\frac{D}{3}\right)^{-2}z\)
\(=\frac{e^z}{9}\)\((1-\frac{2D}{3}+3\times \frac{D^2}{9}....)z\)
\(=\frac{e^z}{9}(z-\frac{2Dz}{3}+0....)\)
\(=\frac{e^z}{9}(z-\frac{2}{3})\) \((\because Dz=\frac{d}{dz}z=1)\)
Therefore, complete solution of equation (4) is
y = C.F + P.I
= (c1 + c2z)e–2z + \(\frac{e^z}{9}\left(z-\frac{2}{3}\right)\) ..........(5)
put z = log x & ez = x in equation (5),
we get y = (c1 + c2 log x) \(\times\) \(\frac{1}{\mathrm x^2}\) + \(\frac{\mathrm x}{9}\left(\log \mathrm x-\frac{2}{3}\right)\)...........(6)
Equation (6) represents solution of given differential equation.