Correct option is (A) \(\mu = \frac{(n - 1)}{n + 1} \tan \alpha\)

As force F tends to push the mass upwards, friction will tend to oppose it. So, it will act downwards.
∴ F = f + mg sin α
f = m N = µ mg cos α
⇒ F1 = µ mg cos α + mg sin α … (i)
Now when pushing downwards, friction will be acting upwards,

∴ F2 + f = mg sin α
F2 = mg sin α – f
f = µ mg cos α
⇒ F2 = mg sin α – µ mg cos α … (ii)
Given that F1 = nF2
∴ µmg cos α + mg sin α = n(mg sin α – µmg cos α)
⇒ \(\mu = \frac{(n - 1)}{n + 1} \tan \alpha\)