Comprehension Type :
Paragraph: A block of mass m slides down a smooth incline of mass M and length l, solely as a result of the force of gravity. The incline is placed on a smooth horizontal table as shown in Figure. Let us denote the coordinate system relative to the table as S1 and the coordinate system relative to the incline as S\(\phi\)

(i) The acceleration of m in the S’ frame is
(A) \(\frac{(M + m) g sin\theta}{M + m sin^2 \theta}\)
(B) \(\frac{(M + m) g sin\theta}{m + M sin^2 \theta}\)
(C) \(\frac{(M - m) g sin\theta}{M + m sin^2 \theta}\)
(D) \(\frac{(M + m) g sin\theta}{M + m sin \theta}\)
(ii) The acceleration of the incline in the S frame
(A) \(\left(\frac{mg\, sin\theta\, cos\theta}{M + m sin^2 \theta} \right)\)
(B) -\(\left(\frac{mg\, sin\theta\, cos\theta}{M + m sin^2 \theta} \right)\)
(C) \(\left(\frac{mg\, sin\theta\, cos\theta}{M + m sin^2 \theta} \right)\)
(D) -\(\left(\frac{mg\, sin\theta\, cos\theta}{M + m sin^2 \theta} \right)\)
(iii) The force exerted by the small m on the wedge of mass M
(A) mg cos\(\theta\)
(B) \(\frac{Mmg}{M + m sin^2 \theta}\)
(C) \(\frac{mg}{cos \theta}\)
(D) None
(iv) At what acceleration ax (in the S frame) must the incline be accelerated to prevent m from sliding
(A) - g tan \(\theta\)
(B) + g tan\(\theta\)
(C) \(-\frac{g\, tan \theta}{2}\)
(D) \(\frac{g\, tan \theta}{2}\)