If the measures of angles of a quadrilateral are in the ratio 2 : 5 : 8 : 9, then their measures in radians, will be
(A) \(\frac{\pi^c}6\),\(\frac{5\pi^c}{12}\),\(\frac{3\pi^c}2\),\(\frac{3\pi^c}4\)
(B) \(\frac{\pi^c}3\),\(\frac{5\pi^c}{12}\) ,\(\frac{2\pi^c}3\),\(\frac{2\pi^c}5\)
(C) \(\frac{\pi^c}6\),\(\frac{5\pi^c}{12}\) ,\(\frac{2\pi^c}3\),\(\frac{4\pi^c}3\)
(D) \(\frac{\pi^c}6\),\(\frac{5\pi^c}{12}\) ,\(\frac{2\pi^c}3\),\(\frac{3\pi^c}4\)