(i) Let p: All rational numbers are real.
q: All rational numbers are complex.
~ p: All rational numbers are not real.
~ q ; All rational numbers are not complex.
Then, the negation of the given compound statement is:
~ (p ∧ q): All rational numbers are not real or not complex.
[~(p ∧ q) = ~p v ~q]
(ii) Let p: All real numbers are rationals. q: All real numbers are irrationals. Then, the negation of the given compound statement is:
~ (p v q): All real numbers are not rational and all real numbers are not irrational. [~(p v q) = ~p ∧ ~ q]
(iii) Let p ; x = 2 is root of quadratic equation x2 – 5x + 6 = 0. q: x = 3 is root of quadratic equation x2 – 5x + 6 = 0.
Then, the negation of the given compound statement is:
~ (p ∧ q) : x = 2 is not a root of quadratic equation x2 – 5x + 6 = 0 or x = 3 is not a root of the quadratic equation x2 – 5x + 6 = 0.
(iv) Let p: A triangle has 3-sides. q: A triangle has 4-sides.
Then, the negation of the given compound statement is:
~ (p v q): A triangle has neither 3-sides nor 4-sides.
(v) Let p: 35 is a prime number. q: 35 is a composite number.
Then, the negation of the given compound statement is:
~ (p v q): 35 is not a prime number and it is not a composite number.
(vi) Let p: All prime integers are even. q: All prime integers are odd.
Then, the negation of the given compound statement is given by
~(p v q): All prime integers are not even and all prime integers are not odd.
(vii) Let p:|x| is equal to x. q: |x| is equal to —x.
Then, the negation of the given compound statement is:
~ (p v q): |x| is not equal to JC and it is not equal to —x.
(viii) Let p: 6 is divisible by 2.
q: 6 is divisible by 3.
Then, the negation of the given compound statement is:
~ (p∧q): 6 is not divisible by 2 or it is not divisible by 3