Option : (3)
Δ = \(\begin{vmatrix}
-1& 1 & 2 \\[0.3em]
3 & -a & 5 \\[0.3em]
2 & -2&-a
\end{vmatrix}\)
= -1(a2 + 10)-1(-3a-10)+2(-6+2a)
= -a2-10+3a+10-12+4a
Δ = -a2+7a-12
Δ = -[a2+7a-12]
Δ = - [(a-3)(a-4)]
Δ = \(\begin{vmatrix}
0& 1 & 2 \\[0.3em]
1 & -a & 5 \\[0.3em]
7 & -2&-a
\end{vmatrix}\)
= 0 – 1 (– a – 35) + 2( – 2 + 7a)
⇒ a + 35 - 4 +14a
15a + 31
Now,
Δ1 = 15a + 31
For inconsistent : Δ = 0
∴ a = 3, a = 4
and for a = 3 and 4 Δ1 ≠ 0
n(S1) = 2
For infinite solution : Δ = 0
and Δ1 = Δ2 = Δ3 = 0
Not possible
∴ n(S2) = 0