Let first term be a and common difference d
\(\frac 1{a_1a_2} + \frac 1{a_2a_3} + .....+ \frac 1{a_{20}a_{21}} = \frac 49\) ......(i)
Also, a1 + a2 + ⋯ + a21 = 189 ......(ii)
By (i),
\(\frac 1{a_1} - \frac 1{a_2} + \frac 1{a_2} - \frac 1{a_3} + ....+ \frac 1{a_{20}} - \frac 1{a_{21}} = \frac {4d}{9}\)
⇒ \(\frac 1a - \frac 1{a + 20d} = \frac{4d}9\)
⇒ \(\frac{20d}{a(a + 20d)} = \frac {4d}9\)
⇒ 45 = a(a + 20d) .......(iii)
From (ii),
21a + 210d = 189
⇒ a + 10d = 9 ......(iv)
By (iii) and (iv),
d = \(\frac 35\) and a = 3
∴ a6a16 = (3 + 3)(3 + 9) = 72