The equation of the transvers and conjugate axes of a hyperbola are,
respectively, `x+2y-3=0`
and `2x-y+4=0`
, and their respective lengths are `sqrt(2)`
and `2sqrt(3)dot`
The equation of the hyperbola is
`2/5(x+2y-3)^2-3/5(2x-y+4)^2=1`
`2/5(x-y-4)^2-3/5(x+2y-3)^2=1`
`2(2x-y+4)^2-3(x+2y-3)^2=1`
`2(x+2y-3)^2-3(2x-y+4)^2=1`
A. `(2)/(5)(x+2y-3)^(2)-(3)/(5)(2x-y+4)^(2)=1`
B. `(2)/(5)(2x-y+4)^(2)-(3)/(5)(x+2y-3)^(2)=1`
C. `2(2x-y+4)^(2)-3(x+2y-3)^(2)=1`
D. `2(x+2y-3)^(2)-3(2x-2y+4)^(2)=1`