In equilibrium, pressure in two chambers are equal. Since no exchange of heat between two chambers or between vessel and surrounding, therefore adiabatic process in to chambers.
(a) chamber 1 `P_1(V_(0)//2)^(gamma)=PV_1^(gamma)` .(i)
chamber 2, `P_2(V_(0)//2)^(gamma)=PV_2^(gamma)`
`(i)//(ii)impliesP_1P_2=((V_1)/(V_2))^(gamma)`
`(V_1)/(V_2)=((P_1)/(P_2))^((1)/(gamma))impliesV_1=((P_1)/(P_2))^((1)/(gamma))V_2`
`V_1+V_2=V_0`
`((P_1)/(P_2))^((1)/(gamma))V_2+V_2=V_0`
`V_2=(V_0)/(((P_1)/(P_2))^(gamma)+1)=((P_2)^(1//gamma)V_0)/((P_1)^((1)/(gamma))+(P_2)^(1//gamma)`
`V_1=((P_1)/(P_2))^(1//gamma)`,`V_2=((P_1)^(1//gamma)V_0)/((P_1)^(1//gamma)+(P_2)^(1//gamma)`
(b) In adiabatic process `DeltaQ=0`
(c) `P_1((V_0)/(2))^(gamma)=PV_1^(gamma)`
`P=(P_1((V_0)/(2))^(gamma))/(V_1^(gamma))=(P_1((V_0)/(2))^(gamma))/((P_1V_0^(gamma))/([(P_1)^((1)/(gamma))+(P_2)^((1)/(gamma))]^(gamma)))`
`=[((P_1)^((1)/(gamma))+(P_2)^((1)/(gamma)))/(2)]^(gamma)`