Correct Answer - A
`F_("net")mg sin theta -mu mg cos theta`
`=mg sin theta -mu_(0)xg cos theta`
`a=(F_("net"))/m =g sin theta-mu_(0)xg cos theta`
`:. V.(dv)/(dx) = g sin theta-mu_(0)xg cos theta`
or `int_(0)^(0)vdv=int_(0)^(xm) (g sin theta-mu_(0)xg cos theta) dx`
Solving this equation we get`,
`x_(m) =(2)/(mu_(0))`