Correct Answer - B
KEY CONCEPT : Applying law of conservation of energy
at point D and Point A
`P.E. at D = P.E. at Q + (K.E)_T + (K.E.)_R where` (K.E)_T = Translational K.E and (K.E)_R = Rotational K.E.
`rArr mg)2.4) mg(1) + (1) + (1)/(2)mv^2 +(1)/(2) I omega^2 ....(i)`
Since the case is of rolling without slipping
`:. v = romega`
`:. omega = (v)/(r )` where r is the radius of the sphere
Also, `I= (2)/(5)mr^2`
Putting in equation (i)
`mg(2.4 - 1) = (1)/(2)mv^2 +(1)/(2) ((2)/(5) mr^2)) (v^2)/(r^2)`
or, ` gxx1.4 = (7v^2)/(10) rArr v = 4.43 m/s`
After point Q, the body takes a parablic path,
The vertical motion perameters of parabolic motion will be
`u_y = 0 S_y = 1m`
`a_y = 9.8m/s^2 1 = 4.9t_y^2`
`t_y =(1)/(sqrt(4.9) = 0.45 sec`
Applying this time in horizontal motion of parabolic paht,
BC = 4.43xx0.45 = 2m