Suppose the angle between `OA and OB = theta`. Then the rate of change of `theta`,
`theta = omega_B - omega_A = 2 pi - pi = pi rad s^-2`
`theta = prop_B - prop_A = (pi)/(2) rad s^-2`
If the angular displacement is `Delta theta`, then
`Delta theta = dot theta t + (1)/(2) ddot theta t^2`
For `A and B` to collide angular displacement, `Delta theta = pi`
`rArr pi = pi t + (1)/(2) ((-pi)/(2)) t^2 rArr t^2 - 4t + 4 = 0 rArr t = 2 s`.

.