The sound level is dB is
`L=10log_(10)((I)/(I_0))`
If `L_1` and `L_2` are the sound levels and `I_1` and `I_2` are the coresponding intensities in the two cases, then
`L_2-L_1=10[log_(10)((I_2)/(I_0))-log_(10)((I_1)/(I_0))]`
`implies30=10log_(10)((I_2)/(I_1))`
`implies(I_2)/(I_1)=10^3`
As the intensity is proporional to the square of the pressure amplitude thus we have
`(trianglep_2)/(trianglep_1)=sqrt((I_2)/(I_1))=sqrt(1000)=32`