Correct Answer - A
Let density of sphere of radius x be `rho (x)`
Here `deltaV = 4pi x^(2). deltax`
`:. Deltam = 4pix^(2). Deltax. rho (x)`
Moment of Inertia, `deltaI = (2)/(3) (deltam)x^(2)`
`= (2)/(3) xx 4pix^(2) deltax rho (x).x^(2)`
or `I = int deltaI = underset(0)overset(R )int (2)/(3) 4pi x^(4) deltax. rho (x)`
or we can say that `I prop underset(0)overset(R )int x^(4) deltax. rho (x)`
Using `rho_(A) (r) = K ((r)/(R))` and
`rho_(B) (r) = K(r//R)^(5)` and solving,
we get, `I_(B)//I_(A) = (6)/(10) :. n = 6`