Correct Answer - `(3)`
`g = (GM)/(R^(2)) = (G)/(R^(2)) xx (4)/(3) piGR rho`
`:. R = (3g)/(4pi G rho)` i.e. `R prop (g)/(rho)`
Hence, `(R_(p))/(R_(e)) = (g_(p))/(g_(e)) xx (rho_(e))/(rho_(p)) = (sqrt(6))/(11) xx (3)/(2)` ..(i)
Escape velocity, `upsilon = sqrt(2gR)`
`:. (upsilon_(p))/(upsilon_(e)) = sqrt((g_(p))/(g_(e)) xx (R_(p))/(R_(e))) = sqrt((sqrt(6))/(11) xx ((sqrt(6))/(11) xx (3)/(2)))`
or `upsilon_(p) = sqrt(6 xx (3//2))/(11) upsilon_(e) = (3)/(11) xx 11 = 3 km//s`