Angle between `vec(a)` and `vec(b)` is `60^(@)` then
A. The compound of `vec(a)-vec(b)` will be `(a^(2)-b^(2))/sqrt(a^(2)+b^(2)+ab)`
B. `vec(a)xx vec(b)` is perpendicular to resultant of `(vec(a)+2vec(b))` and `(vec(a)- vec(b))`
C. The component of `vec(a)-vec(b)` along `vec(a)+vec(b)` will be `(a^(2)-b^(2))/sqrt(a^(2)+b^(2)+2ab)`
D. The component of `vec(a)+vec(b)` along `vec(a)-vec(b)` will be `(a^(2)-b^(2))/sqrt(a^(2)+b^(2)+sqrt(3)ab)`