Correct option is (B) 2.4 m

Here,
Range = 4 m + 6 m = 10 m
As the ball is projected at an angle 45∘ to the horizontal,
Therefore, Range = 4H
10 = 4H
⇒ H = \(\frac {10} 4\) = 2.5 m
Maximum height, H = \(\frac {u^2\sin^2\theta}{2g}\)
\(\therefore u^2 = \frac{H \times 2g}{\sin^2\theta}\)
\(= \frac{2.5\times2 \times 10}{\left(\frac 1 {\sqrt 2}\right)^2}\)
\(= 100\)
\(u = \sqrt{100} = 10 ms^{-1}\)
From trajectory formula,
\(y = x \tan\theta - \frac{gx^2}{2u^2\cos^2\theta}\)
So, the height of the wall PA is,
\(h = (OA)\tan\theta - \frac{g(OA)^2}{2u^2\cos^2\theta}\)
\(h = (4 \times 1) - \frac12 \times \frac{10 \times 4^2}{10^2 \times (1/ \sqrt 2)^2}\)
\(∴ h = 2.4 m\)