Correct Answer - A
Given, `int x^(5) e^(-4x^(3))dx=(1)/(48)e^(-4x^(3))f(x)+C`
In LHS, put `x^(3) = t`
`rArr" "3x^(2)dx=dt`
So, `int x^(5)e^(-4x^(3))dx =(1)/(3)int te^(-4t)dt`
`=(1)/(3)[t(e^(-4t))/(-4)-int (e^(-4t))/(-4)dt]" "["using integration by parts"]`
`=(1)/(3)[(te^(4t))/(-4)+(e^(-4t))/(-16)]+C`
`=-(1)/(48)e^(-4t)[4t+1]+C`
`=-(e^(-4x^(3)))/(48)[4x^(3)+1]+C" "[therefore t=x^(3)]`
`therefore" "f(x) = -1 -4X^(3)` (comparing with given equation)