Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.8k views
in Differentiation by (92.4k points)
closed by
Differentiate `{x^(tanx)+sqrt((x^(2)+1)/(x))}` w.r.t. x.

1 Answer

0 votes
by (91.6k points)
selected by
 
Best answer
Let `y=u+v`, where `y=x^(tanx) and v=sqrt((x^(2)+1)/(x)).`
Now, `u=x^(tanx)`
`rArr logu=(tanx)(logx)`
`rArr(1)/(u).(du)/(dx)=(tanx).(d)/(dx)(logx)+(logx).(d)/(dx)(tanx)`
`" [differentiating w.r.t. x]"`
`=(tanx).(1)/(x)+(logx)sec^(2)x`
`rArr(du)/(dx)=u.[(tanx)/(x)+(logx)sec^(2)x]`
`rArr(du)/(dx)=x^(tanx).{(tanx)/(x)+(logx)sec^(2)x}." ...(i)"`
And, `v=sqrt((x^(2)+1)/(x))`
`rArr log v=(1)/(2).{log (x^(2)+1)-logx}`
`rArr(1)/(v).(dv)/(dx)=(1)/(2).{(2x)/((x^(2)+1))-(1)/(x)}" [differentiating w.r.t. x]"`
`rArr(dv)/(dx)=(v)/(2).{(2x^(2)-(x^(2)+1))/(x(x^(2)+1))}`
`rArr(dv)/(dx)=(1)/(2)sqrt((x^(2)+1)/(x)).{(x^(2)-1)/(x(x^(2)+1))}." ...(ii)"`
`therefore y=u+v`
`rArr(dy)/(dx)=(du)/(dx)+(dv)/(dx)`

`rArr(dy)/(dx)=x^(tanx).{(tanx)/(x)+(logx)sec^(2)x}+(1)/(2).sqrt((x^(2)+1)/(x)).{((x^(2)-1))/(x(x^(2)+1))}.`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...