Correct Answer - C
We have,
`underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n)`
`=1/2underset(r=0)overset(n)(sum){1-cos""(2rpi)/(n)}`
`=1/2underset(r=0)overset(n)(sum)1-1/2underset(r=0)overset(n)(sum)cos""(2rpi)/(n)`
`=((n+1))/(2)-1/2{1+cos""(2pi)/(n)+cos""(4pi)/(n)+...+cos""(2npi)/(n)}`
`=((n+1))/(2)-1/2{cos""(4pi)/(n)+cos""(6pi)/(n)+...+cos""(2(n-1)pi)/(n)}`
`=((n-1)/(2))=1/2xx(cos pisin(pi-(pi)/(n))=(n-1)/(2)+1/2=n/2`