Correct Answer - C
Given `(d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))`
`=(d)/(dx)[(1+x+x^(2)+x^(4)-x)/(1+x+x^(2))]`
`=(d)/(dx)[1+(x^(4)-x)/(x^(2)+x+1)]`
`=(d)/(dx)[1+(x(x^(3)-1))/(x^(2)+x+1)]`
`=(d)/(dx)[1+x(x-1)]`
`=(d)/(dx)[1+x^(2)-x]-2x - 1" "...(i)`
Now comparing equation (i) with AX + B, we get A = 2 and B = -1.