Magnifying power of an astronomical telescope is defined as the ratio of the angle subtended at the eye by the final image of the angle subtended at the eye, by the object directly.
The expression for magnifying power :
`m=(f_(0))/(f_(e ))(1+(f_(e ))/(d))`
(a) In normal adjustment `m= -(f_(0))/(f_(e ))`
(b) When final image is formed at infinity
`m=(f_(0))/(f_(e ))(1+(f_(e ))/(d)), f_(0)=150 cm implies f_(e )=5 cm`.
Using `(1)/(f )=(1)/(v)-(1)/(u)` for objective.
`(1)/(150)=(1)/(v)-(1)/(-3000) implies (1)/(v)=(1)/(150)-(1)/(3000)=(20-1)/(3000) implies v=(3000)/(19)`
`m_(0)=(3000)/(19)xx(1)/(-3000)=-(1)/(19)`
Using `(1)/(f)=(1)/(v)-(1)/(u)` for eye piece, `(1)/(5)=(1)/(-25)-(1)/(u) implies (1)/(u) =(1)/(-25)-(1)/(5) implies u=(1+5)/(-25)`
`u=(-25)/(6) cm implies m_(e )=(v)/(u)`
`m_(e )=(-25)/(-25)xx6=6`
`therefore` Total magnification `=m_(0)xxm_(e )= -0.315`
`h_(1)=0.315xx100=31.578`.