Correct Answer - 2
` a_(n) = a^(n) - beta^(n)`
Also `alpha^(8)` on both sides
`rArr alpha ^(10) - 6alpha ^(9) - 2 alpha^(8) = 0` (1)
Similarly ` beta ^(10) - 6 beta^(9) - 2 beta ^(8) = 0 ` (2)
Subtracting (2) from (1) we have
` alpha ^(10) - beta^(10) - 6 (alpha ^(9) - beta^(9)) = 2 (alpha ^(8) - beta^(8))`
`rArr a_(10) - 6 a_(9) = 2a_(8)`
`rArr (a_(10) - 2 a_(8))/(2a_(9)) = 3 `