Q. Let p and q real number such that `p!= 0`,`p^2!=q` and `p^2!=-q`. if `alpha` and `beta` are non-zero complex number satisfying `alpha+beta=-p` and `alpha^3+beta^3=q`, then a quadratic equation having `alpha/beta` and `beta/alpha` as its roots is
A. `(p^(3) + q )x^(2) - (p^(3) + 2p ) x + (p^(3) + q ) = 0 `
B. `(p^(3) + q )x^(2) - (p^(3) - 2p ) x + (p^(3) + q ) = 0 `
C. `(p^(3) - q )x^(2) - (5p^(3) - 2p ) x + (p^(3) - q ) = 0 `
D. `(p^(3) - q )x^(2) - (5p^(3) + 2p ) x + (p^(3) - q ) = 0 `