Correct Answer - A::D
The differential equation can be rewritten as `(xdx+ydy)/sqrt(1-(x^(2)+y^(2)))=(xdy-ydx)/sqrt(x^(2)+y^(2))`
Since `dtan^(-1)(y//x)=(xdy-ydx)/(x^(2)+y^(2))`
and `d(x^(2)+y^(2))=2(xdx+ydy)`
We have `(1/2d(x^(2)+y^(2))/(sqrt(x^(2)+y^(2))sqrt(1-(x^(2)+y^(2)))))=(xdy-ydx)/(x^(2)+y^(2))=d{(tan^(-1)(y//x))}`
Put `x^(2)+y^(2)=r^(2)` in the LHS. Then
`(tdt)/(tsqrt(1-t^(2)))=d{tan^(-1)(y//x)}`
Integrating both sides, we get
`sin^(-1)t=tan^(-1)(y//x)+c`
i.e., `sin^(-1)sqrt((x^(2)+y^(2)))=tan^(-1)(y//x)+c`
i.e., `sin^(-1)sqrt((x^(2)+y^(2)))=tan^(-1)(y//x)+c`