Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.2k views
in Mathematics by (97.5k points)
closed by
`int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx` equals
A. `(1)/(2)ln.(x)/(lnx)-(1)/(4)ln(ln^(2)x-x^(2))+C`
B. `(1)/(4)ln((lnx-x)/(lnx+x))-(1)/(2)tan^(-1)((lnx)/(x))+C`
C. `(1)/(4)ln((lnx-x)/(lnx+x))+(1)/(2)tan^(-1)((lnx)/(x))+C`
D. `(1)/(4)(ln((lnx-x)/(lnx+x))+tan^(-1)((lnx)/(x)))+C`

1 Answer

0 votes
by (94.7k points)
selected by
 
Best answer
Correct Answer - B
`I=int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx`
`=int(1-logx)/(x(((logx)/(x))^(4)-1))dx`
Put `(logx)/(x)=t rArr (1-logx)/(x^(2))=dt`
`therefore" "I=int(dt)/((t^(4)-1))=int(dt)/((t^(2)+1)(t^(2)-1))`
`=(1)/(2)int((t^(2)+1)-(t^(2)-1))/((t^(2)+1)(t^(2)-1))dt`
`=(1)/(2)(int(dt)/(t^(2)-1)-int(dt)/(t^(2)+1))=(1)/(2)((1)/(2)ln(t-1)/(t+1)-tan^(-1)t)`
`=(1)/(4)ln((lnx-x)/(lnx+x))-(1)/(2)tan^(-1)((lnx)/(x))+C`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...