A charged particle of specific charge (charge/mass) `alpha` released from origin at time `t=0` with velocity `vec v = v_0 (hat i + hat j)` in uniform magnetic field `vec B = B_0 hat i.` Coordinates of the particle at time `t= pi//(B_0 alpha)` are
A. `((v_(0))/(2B_(0)alpha),(sqrt2v_(0))/(alphaB_(0)),(-v)/(B_(0)alpha))`
B. `((-v_(0))/(2B_(0)alpha),0,0,)`
C. `(0,(2v_(0))/(B_(0)alpha),(v_(0)pi)/(2B_(0)alpha))`
D. `((v_(0)pi)/(B_(0)alpha),0,(-2v_(0))/(B_(0)alpha))`