As per Ampere's circuital law:
\(\oint \vec B.\vec {dl} = \mu_0I\)
(i) For r < a
Ie = current enclosed by Amperian circuit loop of radius r.
\(= I. \frac{\pi r^2}{\pi a^2}\)
\(= \frac{Ir^2}{ a^2}\)
\(\therefore B\oint \vec {dl} = \mu _0. I_e\)
\(= \frac{\mu_0Ir^2}{a^2}\)
Or \(B = \frac{\mu_0 Ir^2}{a^2} . (\frac 1{2\pi r})\)
\(= \left(\frac{\mu_0}{2\pi} \frac I{a^2}\right)\)
(ii) For r > a
\(\oint \vec B.\vec {dl} = \mu_0I\)
\(\therefore B.2\pi r = \mu_0I\)
Or \(B = \frac{\mu _0I}{2\pi r}\)
The graph of, B(r) vs r, is as shown
